Byte/RE ИТ-издание

Атомарные пределы плотности магнитной памяти

Ученые из IBM Research, исследовательского подразделения корпорации IBM, продемонстрировали возможность хранения информации в ячейке памяти, состоящей всего лишь из 12 магнитных атомов (для сравнения: современный жесткий диск использует около 1 млн атомов для хранения одного бита информации). Описание исследований было опубликовано в авторитетном научном журнале Science.

Несмотря на то что технологии на базе кремниевого транзистора становятся все более дешевыми, удовлетворительными с точки зрения плотности записи и эффективными, фундаментальные физические ограничения делают этот путь обычного последовательного масштабирования неприемлемым. Для поддержки высоких темпов инноваций в области вычислительной техники нужны альтернативные подходы.

Применив новый подход и начав с наименьшего структурного элемента памяти – атома – ученые продемонстрировали магнитный накопитель, который обеспечивает по меньшей мере в 100 раз более высокую плотность записи, чем современные жесткие диски и чипы твердотельной памяти. В будущем наноструктуры, сформированные добавлением одного атома за один раз и применяющие нетрадиционную форму магнетизма, получившую название антиферромагнетизма, смогут дать пользователям и компаниям возможность сохранять в 100 раз больше информации в том же объеме памяти.

Ферромагнетики используют магнитное взаимодействие между составляющими их атомами, которое ориентирует все их спины – как основу магнетизма атомов – в одном направлении. Ферромагнетики хорошо работают в магнитных накопителях информации, но главным препятствием на пути их миниатюризации до атомарных размеров является взаимодействие ближайших (соседних) однобитовых элементов памяти друг с другом. Намагничиваемость – как результат магнитного поля – одного однобитового элемента памяти может сильно влиять на его «соседа». Использование магнитных битов на атомарном уровне для хранения информации или выполнения полезных вычислительных операций требует точного контроля за взаимодействием между этими элементарными ячейками памяти.

Ученые из IBM Research применили сканирующий туннельный микроскоп для формирования группы из 12 «антиферромагнитно» связанных атомов, сохранявших бит данных в течение нескольких часов при низкой температуре. Используя присущее этим атомам свойство изменения направлений магнитного спина, ученые продемонстрировали способность «компоновать» соседние магнитные биты гораздо ближе друг к другу, чем это было возможно ранее. Это позволило значительно увеличить плотность записи/хранения магнитной памяти без нарушения состояния соседних битов. Таким образом, ученым из IBM удалось создать самый компактный однобитовый элемент магнитной памяти, используя лишь 12 атомов.

Вам также могут понравиться